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a b s t r a c t

The flows that occur in the solution, in the linear approximation, of the problem of the failure of a dam for
the model of two-layer shallow water with a free boundary are analysed qualitatively. It is shown that,
apart from symmetry, four basic processes and four transients exist. They are distinguished by the type of
jumps in the levels on the lines of discontinuity and by the direction of the velocities in the liquid layers.
Examples of the profiles of all these flows are presented.

© 2009 Elsevier Ltd. All rights reserved.

Three differential models of two-layer shallow water have been developed and analysed:1 Model I is a model with a free boundary,
Model II is an “under a cover” model and Model III is the general limiting case of these obtained when the ratio of the densities of the liquid
in the layers tends to unity. The hyperbolic domains, in which discontinuous solutions are allowed, have been constructed for all three
models and, in this connection, a problem was set up on the formulation of these models in the form of complete systems of conservation
laws2,3 and the study of the stable discontinuous solutions with intermittent waves which are admitted by these systems.

One of the possible approaches to solving this problem, which goes back to the classical one-dimensional models of gas dynamics4

and one-layer shallow water,5,6 is associated with the proof of the unique solvability in the domain of hyperbolicity of the problem of the
decomposition of an arbitrary discontinuity. This approach has been implemented in the case of the simplest Model III.7 However, it could
not be successfully extended to the more complex Models I and II, since the problems of the decomposition of a discontinuity which arise
here are too complex and it turned out to be impossible to carry out a complete analytical analysis of them in the general case.

A criterion for the correctness of the complete system of conservation laws has been proposed,8 which assumes maximum matching of
the domain of convexity of the closing conservation law and the domain of hyperbolicity of the differential model. A correct complete system
of conservation laws has been selected on the basis of this criterion for a model of two-layer shallow water with a free upper boundary. The
laws of conservation of mass, conservation of total momentum and the discontinuity of the velocity on the interface of the layers appear
as the basic conservation laws and the law of conservation of total energy appears as the closing law in this system. The stable intermittent
waves admitted by this system have been studied8 and an extension of this system to the spatially two-dimensional case has been given.

In order to confirm that the proposed complete system of conservation laws correctly reflects the parameters of the discontinuous waves
in real flows, it is necessary to carry out a comparative analysis of the solutions of the problem or the decomposition of a discontinuity
(and, to begin with, its most important special case, which can be most easily experimentally realized, that is, the problem of the failure of
a dam), which are obtained using this system and other complete systems having a definite physical meaning. However, this can only be
performed as the result of a numerical experiment. In this paper, the problem is therefore considered in a linear approximation with the aim
of carrying out a preliminary qualitative analysis of the possible type of solutions of the problem of the failure of a dam in two-layer shallow
water. In this approach, all the complete systems of conservation laws become equivalent and ordinary waves (that is, discontinuous waves
propagating at a constant velocity and centred subsiding waves) are replaced by discontinuity lines.

The system of equations of two-layer shallow water with a free boundary is presented in Section 1 and its linear approximation with
respect to the constant solution, corresponding to a state of rest, is constructed. In Section 2, the hyperbolicity of the resulting linear
system is checked and the invariant form of it is presented. The solution of the Cauchy problem with arbitrary initial data is written
out using this invariant form. A problem of the decomposition of a discontinuity, for which the relations between the discontinuities in
the flow parameters and the initial discontinuities of the Riemann invariants are obtained, is considered in Section 3 for the linear system
constructed. It follows from these relations that, apart from symmetry, ten classes of solutions of the problem exist which have qualitatively

� Prikl. Mat. Mekh. Vol. 72, No. 6, pp. 958–970, 2008.

E-mail address: ostapenko@hydro.nsc.ru (V.V. Ostapenko).

0021-8928/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2009.01.003

http://www.sciencedirect.com/science/journal/00218928
http://www.elsevier.com/locate/jappmathmech
mailto:ostapenko@hydro.nsc.ru
dx.doi.org/10.1016/j.jappmathmech.2009.01.003


P.Ye. Karabut, V.V. Ostapenko / Journal of Applied Mathematics and Mechanics 72 (2008) 694–703 695

different profiles of the free surface and the interface between the layers. The problem of the failure of a dam is studied in Sections 4 and
5 which is obtained as a special case of the problem of the decomposition of a discontinuity with the additional condition that the initial
velocities in the layers are zero. It is shown that, apart from symmetry, there are four main and four transitional (degenerate) classes of
qualitatively different solutions in this problem for which the profiles of the levels of the lower and upper layers are constructed and the
domains of their existence in the planes of the different defining parameters are distinguished.

1. Formulation of the problem

The motion of two-layer shallow water over a horizontal bottom with a free boundary surface without taking account of the effect of
friction and on the assumption that the gravitational acceleration g = 1 is described by the following system of differential equations:1

(1.1)

where H and U are the depth and velocity of the lower layer, h and u are the depth and velocity of the upper layer, and � = �2/�1 < 1 is the
ratio of the densities �2 and �1 of the upper and lower layers.

We will consider the constant solution of system (1.1)

(1.2)

and its small perturbation

(1.3)

in which �f � 1. Substituting the functions (1.3) into system (1.1), only retaining the quantities O(�f) in it after this and, for brevity, omitting
the symbol �, we obtain the linear approximation of system (1.1) relative to the state of rest (1.2)

(1.4)

We write system (1.4) in the vector form

(1.5)

and consider for it a problem on the decomposition of the initial discontinuity, that is, a Cauchy problem with the following piecewise-
constant initial data

(1.6)

The aim of this paper is to carry out a qualitative analysis of the solution of the problem of the decomposition of the discontinuity (1.5),
(1.6) and, to begin with, its most important special case, that is, the solutions of the problem of the failure of a dam which is obtained if, in
the initial data (1.6),

(1.7)

In the case of the linear system (1.5), this problem admits of a complete analytical investigation, unlike the analogous problem for the
quasilinear system (1.1), which can only be investigated to the full extent numerically.

2. Solution of the Cauchy problem

It has been shown1 that quasilinear system (1.1) is hyperbolic when one of the two inequalities

(2.1)

is satisfied, in which f1 and f2 are certain positive functions. Since the constant solution (1.2) satisfies the first equality of (2.1), system (1.1)
is hyperbolic for this solution. The hyperbolicity of the linear system (1.4), which, when written in vector form, has the form (1.5), follows
from this.

We will now directly verify the hyperbolicity of system (1.5) by finding the roots of the characteristic equation

(2.2)

corresponding to it.
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Fig. 1.

Since P(1) = −�h0 < 0, the biquadratic equation (2.2) in y = �2 has two different positive roots. Hence, the eigenvalues of the matrix A,
which are defined by the formulae

(2.3)

turn out to be real and different.
Since the linear system (1.5) is hyperbolic, it can be written in the invariant form3

(2.4)

Henceforth, unless otherwise stated, i = 1, 2, 3, 4; � = (�1, �2, �3, �4)T = Su is the vector of the invariants, � = (�i�
i
j) is a diagonal

matrix and S = (I1, I2, I3, I4)T is a non-degenerate matrix, the rows of which

(2.5)

are the left eigenvectors of matrix A, that is,

(2.6)

It follows from relations (2.6) that the matrix S−1 = (r1, r2, r3, r4), which is the inverse of S, satisfies the relation

by virtue of which its columns

(2.7)

are the right eigenvectors of the matrix A.
Using the invariant form (2.4) of writing the linear system (1.5), the solution of the Cauchy problem u(x, 0) = �(x) for it with an arbitrary

initial function �(x) can be represented in the form2,3

(2.8)

The invariant �k(x∗, t∗) remains constant along the characteristics x = �kt + xk emerging from the point xk = x* − �kt* on the x axis (see Fig. 1)
by virtue of which

(2.9)

Omitting, for brevity, the arguments x* and t*, solution (2.8), when account is taken of the expression for the vector u and the representation
(2.7), can be rewritten in the form

(2.10)
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Fig. 2.

It follows from the first two relations of (2.10) that the level of the free surface is calculated using the formula

(2.11)

3. The problem of the decomposition of a discontinuity

In the case of the problem of the decomposition of discontinuity (1.6), solution (2.8), (2.9) corresponds to four strong discontinuities
which propagate along the rays x = �it, t < 0. These discontinuities are connected by the constant flow domains uk (k = 1, 2, . . ., 5) labelled
with the numbers k = 1, 2, . . ., 5 in Fig. 2 and, at the same time, u1 = �l, u5 = �r. We will now introduce the notation [u]i = ui + 1 − ui for the
jump in the solution u on passing across the i-th discontinuity line x = �kt from domain i to domain i + 1.

Definition 1. The two solutions, u and u′, of the problem of the decomposition of discontinuity (1.6) have similar profiles if, at each of
the four discontinuities x = �it, the jumps in the depth of the lower layer H and the level of the free surface z occur in the same direction in
these solutions, that is, if

(3.1)

If the solutions u and u′ do not satisfy condition (3.1), they have qualitatively different profiles.

We will now construct all the qualitatively different profiles which can be obtained when solving the problem of the decomposition of
discontinuity (1.6). The following theorem is required to do this, in the formulation of which, for brevity, the abbreviation � ∼ � is used for
sign(�) = sign(�).

Theorem 1. When solving the problem of the decomposition of discontinuity (1.6), the relations

(3.2)

(3.3)

in which [�i] = �r
i
− �l

i
, where �r = S�r , �l = S�l are the initial values of the vector of the invariants �, are satisfied for jumps in the depths in

the layers and for the jumps in the level of the free surface.

Proof. Since, when solving the problem of the decomposition of discontinuity (1.6) for linear system (1.5), each invariant �i only undergoes
a discontinuity on passing through the i-th discontinuity line x = �it, while remaining constant on passing across the remaining discontinuity
lines x = �kt, k /= i, the relations

(3.4)

hold, where [�i] = [�i]|x=t=0 = �r
i
− �l

i
is the initial jump in the i-th invariant when x = 0. Taking account of this, from the first two formulae

of (2.10), we obtain

(3.5)

Since, when account is taken of expressions (2.3), the quantities ai and �i, which are given by formulae (2.5) and (2.7), satisfy the conditions

(3.6)
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Fig. 3.

then, from relations (3.5), we have

(3.7)

We now note that each coefficient ck = ak + � in formula (2.11) has the same sign as the coefficient ak in the second formula of (2.10).
When k = 1, 4, this is obvious by virtue of the positiveness of the quantities � and a1 = a4, and, when k = 2, 3 and account is taken of relations
(2.3) and (2.4), it follows from the chain of inequalities

Hence, ci ∼ ai ⇒ [z]i ∼ [h]i, and the theorem is proved.

It follows from this theorem that, when solving the problem of the decomposition of discontinuity (1.6), the directions of the jumps
in the depths and levels are completely defined by the signs of the jumps in the four invariants. This distinguishes sixteen qualitatively
different profiles, six of which are shown in Fig. 3. The remaining profiles are obtained in the following manner: a further four profiles
are obtained by permutation of the profiles of the lower and upper layers in Fig. 3, a–d and the remaining six profiles are obtained by
reflections in the z axis of those ten solutions which have been constructed that are asymmetric about the z axis. It follows from Theorem
1 that the characteristic feature of the profiles constructed is that the jumps in the levels of the lower layer and the free surface in the
external discontinuity lines x = ±�1t occur in the same direction and the jumps on the internal discontinuity lines x = ±�2t occur in opposite
directions.

The following theorem is proved in a similar manner to Theorem 1 using the last two formulae of (2.10) and taking account of the
inequalities

(3.8)

Theorem 2. The relations

(3.9)

are satisfied for the jumps in the velocities in the layers in the solution of the problem of the decomposition of discontinuity (1.6).

It follows from this theorem that the jumps in the velocities on the external discontinuity lines x = ±�1t in the lower and upper layers
occur in the same direction and that the jumps on the internal discontinuity lines x = ±�2t occur in opposite directions.



P.Ye. Karabut, V.V. Ostapenko / Journal of Applied Mathematics and Mechanics 72 (2008) 694–703 699

4. The problem of dam failure

We will now consider in greater detail an important special case of the problem of the decomposition of the discontinuity (1.6), the
problem of dam failure which is obtained in the case of the zero initial velocities (1.7).

Theorem 3. When solving the problem of dam failure (1.6), (1.7), the following relations are satisfied

(4.1)

in which

(4.2)

where 	 = Hr − Hl and 
 = hr − hl are the amplitudes of the initial discontinuities in the depths in the lower and upper layers, in the case of the
jumps in the depths in the layers and the jumps in the level of the free surface.

Proof. Taking account of relations (1.6), (1.7) and (2.5), from formula (2.9) we obtain expressions for the initial values of the invariants

(4.3)

and, from this, we have

(4.4)

Substituting these values of [�k] into the first formula of (3.5), we obtain

(4.5)

The functions f3 and f4 are defined by the equalities f1 = f4 and f2 = f3. Taking account of the symmetry conditions (3.6) and (3.8), we find

(4.6)

The remaining equalities, appearing in formulae (4.1), follow from the relations

(4.7)

It follows from this theorem that, when solving the dam failure problem, the jumps in the depths and levels are identical on the external
x = ±�1t and the internal x = ±�2t discontinuity lines which considerably restricts the number of qualitatively different profiles of the
admissible solutions shown in Fig. 3, by distinguishing from them just four profiles which, apart from the symmetry about the z axis and
the permutation of the profiles of the lower and upper layers, are shown in Fig. 3,a. The domains of existence of flows with these profiles
in the plane of the variables 	 and 
 are shown in Fig. 4, a. In domains I and II which are obtained when f1 > 0, f2 > 0 and f1 > 0, f2 < 0, a flow
of the type shown in Fig. 3, a and the flow which is obtained from it by permutation of the profiles of the layers respectively are realized
but, in domains I′ and II′ which are obtained when f1 < 0, f2 < 0 and f1 < 0, f2 > 0, flows occur which are symmetrical to them about the z
axis. If the values of 	 and 
 lie on one of the lines f1 = 0 or f2 = 0, then transitional flows occur in which only one of a pair of symmetrical
discontinuities remains. When f1(	, 
) = 0, the external discontinuities located on the lines x = ±�1t degenerate and, when f2(	, 
) = 0, the
internal discontinuities located on the lines x = ±�2t degenerate.

Fig. 4.
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The following theorem is proved in a similar manner to Theorem 3 using formulae (2.10).

Theorem 4. When solving the dam failure problem (1.6), (1.7), the following relations are satisfied

(4.8)

in which the functions fm are specified using formula (4.2).

This theorem sets constraints on the magnitudes of the jumps in the velocities on the discontinuity lines x = �it. However, in a qualitative
analysis of the resulting solutions, an analysis of the possible directions of the velocities of the liquid in the domains of the constant flows
marked with the number 1, 2, . . ., 5 in Fig. 2 is of great interest. We investigate this in the next section.

5. The directions of the velocities in the layers

We first give the following definitions.

Definition 2. The two solutions, u and u′, of the problem of the decomposition of discontinuity (1.6) have similar velocity fields if, in these
solutions, the directions of the velocities are the same in both layers of all domains of the constant flow (see Fig. 2), that is, if

(5.1)

If the solutions u and u′ do not satisfy condition (5.1), they have qualitatively different velocity fields.

Definition 3. The two solutions, u and u′, of the problem of the decomposition of discontinuity (1.6) are similar if they have similar profiles
and velocity fields, that is, if they simultaneously satisfy conditions (3.1) and (5.1). The solutions u and u′ are qualitatively different if they
are not similar, that is, if they do not satisfy one of the conditions (3.1) or (5.1).

We will now distinguish all the qualitatively different solutions of the dam failure problem. For this purpose we require the following
theorem, in formulating which account has been taken of the fact that, in the problem in question,

(5.2)

Theorem 5. When solving the dam failure problem (1.6), (1.7) for the velocities in the constant flow domains 2–4, the following relations are
satisfied

(5.3)

in which

(5.4)

(5.5)

Proof. We first separate the relations for the velocities of the lower layer Ui. Taking account of equalities (5.2), from the first formula of
(4.9) we obtain

and, from this, when account is taken of the first formula of (4.10), we have

Substituting the representation of the functions fk in the form (4.2) into these equalities, we arrive at the first relation of (5.4). The expressions
for the velocities of the upper layer ui are obtained in a similar manner. The first and last inequalities of (5.5) follow from the symmetry
conditions (2.3) and (3.6) and the second inequality, when account is taken of relations (2.2), (2.3), (2.5) and (2.7), is obtained from the
chain of formulae

where
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Fig. 5.

When account is taken of Theorem 3, it follows from this theorem that, when solving the dam failure problem (1.6), (1.7), the flow
velocities in domains 2 and 4 in Fig. 2 are opposite in sign to the jumps in the depths on the external lines of discontinuities x = ±�1t, that is,

(5.6)

In the central domain 3 in Fig. 2, the directions of the velocities in the layers are determined by the signs of the functions g1 and g2, the level
lines of which g1(	, 
) = 0 and g2(	, 
) = 0, when account is taken of formulae (5.4) and inequalities (5.5), are the strictly monotonically
decreasing linear functions 
1(	) and 
2(	). The graph of the first of these passes through the domains II and II′ in Fig. 4, and the graph of
the second passes through the domains I and I′. As a result, each of these domains is divided into two subdomains which are denoted by the
subscripts 1 and 2 in Fig. 4, b. Qualitatively different classes of solutions in the sense of Definition 3 are obtained in all these subdomains.
Just eight of these classes are obtained and, apart from the symmetry about the z axis, just four.

Examples of the main flow processes, obtained for different initial values of the discontinuities in the depths 	 and 
 are shown in
Fig. 5. The transitional flow regimes, obtained for the initial values (2.65, −2.8), (1.3, 2.5), (0.2, 1.1) and (4.7, 1.7), which lie on the lines f1 = 0,
f2 = 0, g1 = 0 and g2 = 0 respectively (see Fig. 4, b), are shown in Fig. 6. When g1 = 0 in the central domain 3 (see Fig. 2), the flow velocity in
the lower layer vanishes and, when g2 = 0, the flow velocity in the upper layer vanishes. The length of the arrows in Figs. 5 and 6, by means
of which the direction of flow in the layer is indicated, is proportional to the modulus of the velocity of this flow. The solutions shown in
Figs. 5 and 6 were obtained for h0 = 1, � = 0.5, t = 7.

It follows from Fig. 4 that the class of solution obtained is completely determined by the angle of inclination � of the initial vector (	,

) to the 	 axis. Here, a solution of class I1 is obtained when � ∈ (�1, �2), of class I2 when � ∈ (�2, �3), of class II1 when � ∈ (�3, �4) and of
class II2 when � ∈ (�4, �5) where, when account is taken of formulae (4.2) and (5.4),

(5.7)

Since, when relations (2.3), (2.5), (5.5) and (5.7) are taken into account, the angles �j can be considered as functions of the initial depth
h0 and the ratio of the densities �, that is, �j = �j(h0, �), this enables us to construct the domains of existence of the qualitatively different
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Fig. 6.

Fig. 7.

classes of solutions of the dam failure problem in the plane of the variables �, h0 for fixed � and in the plane of the variables � and � for
fixed h0 (see Fig. 7).

6. Conclusion

A theorem concerning the unique solvability of the problem of the decomposition of the discontinuity (1.6) in the small, that is, for an
initial discontinuity of sufficiently small amplitude |�l − �r| = � � 1, has been proved for an arbitrary hyperbolic system of conservation
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laws. The basic shortcoming of this theorem lies in the fact that it does not give an explicit algorithm for constructing the corresponding self-
similar solution. At the same time, a problem of the decomposition of a discontinuity for the linear approximation of the initial quasilinear
hyperbolic system is obtained in the first approximation with respect to the parameter �. It is precisely this problem for the system of
equations of two-layer shallow water which has been considered in this paper. In the second approximation with respect to the parameter
�, the discontinuities, obtained in the first approximation, separate into rarefaction waves and stable shock waves, the Hugoniot conditions
in which will depend on the specific form of the basic conservation laws.
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